

Revision: 25/06/2021

Page 1 of 9

Technical Data:

Base	Vinylester styrene f	free							
Consistency	Stable paste								
Curing system	Chemical reaction								
(1) Cartridge temperature = 15°C (2) Curing time on dry surface (20°C/65% R.H.) (x2 on wet surface)	Temperature ≥-10°C (1) ≥-5°C ≥0°C ≥5°C ≥10°C ≥20°C ≥30°C ≥30°C ≥35°C ≥40°C ≥40°C	<u>Start</u> 90 min 90 min 45 min 25 min 15 min 6 min 4 min 2 min 1,5 min	Full Cure (2) 24 u 14 u 7h 2 u 80 min 45 min 25 min 20 min 15 min						
Specific Gravity	1,77 g/cm ³		÷						
Temperature Resistance	- 40°C to + 120°C								
Elasticity modulus	14000 N/mm ²								
Maximum bending strength	15 N/mm ²								
Maximum compression strength	100 N/mm ²								

Product:

SOUDAFIX VE400-SF is a two-component anchoring resin for the pressure-free securing of threaded rods (ETA: M8-M30), studs, reinforcement bars (ETA: Ø8-Ø32), threaded collars, profiles etc in various solid and hollow materials, such as cracked and uncracked concrete, solid brick, hollow brick, porous concrete, natural stone (see remarks), plasterboard walls, etc...

Characeristics:

- Easy to use and to apply
- Fast cure
- Wide application area, even in wet drill holes, under water (ne sea water) and at temp. as low as -10°C
- Overhead installation allowed
- Styrene free (low odour)
- Cartridge re-usable by simply exchanging static mixer
- Watertight and impermeable fixing
- High chemical resistance
- Fire Resistance class F120 (M8-M30)
- European Technical Assessment ETA-10/0167 based on EAD 330499-00-0601 for application in cracked and uncracked concrete.

- European Technical Assessment ETA-12/0558 based on EAD 330087-00-0601 for application in post-installed rebar connections.
- Indoor air emission class A+

Application area:

Securing of heavy loads in solid and hollow building materials. Pressure free anchoring even close to edges. Can be used as repair mortar.

Packaging:

Colour: dark grey after mixing *Cartridge*: 280 ml cartridge for standard skeleton gun, 380 ml for use with special two-component gun.

Shelf life:

18 months in original packaging. Store at cool and dry place at temperatures between +5°C en +25°C.

Substrates:

Type: All usual porous building substrates, poor adhesion on smooth non-porous materials. *State:* Clean, free of dust and grease.

Remark: The directives contained in this documentation are the result of our experiments and of our experience and have been submitted in good faith. Because of the diversity of the materials and substrates and the great number of possible applications which are out of our control, we cannot accept any responsibility for the results obtained. In every case it is recommended to carry out preliminary experiments.

Revision: 25/06/2021

Page 2 of 9

Application:

Application method: standard skeleton gun for 280 ml cartridge, special 2 component gun for 380 ml, preferably heavy duty.

Application temperature: -10°C to +40°C C

Before cure: wipe off excess of product and clean afterwards with white spirit or acetone.

After cure: it is recommended to let the product fully cure, so that it can easily be removed mechanically with hammer and chisel.

Repair: with the same material

Safety recommendations:

Apply the usual industrial hygiene precautions. Only use in well ventilated spaces. Consult the label for more information.

Remarks:

There is a risk of staining on porous substrates such as natural stone.

Instructions for use:

- Drill hole at recommended depth
- Clean drill hole with brush and air pump thoroughly
- Screw static mixer onto cartridge
- Dispense the first 10 cm of the product to waste (on piece of cardboard) until an even colour (dark grey) is achieved, and the product is well mixed
- Solid stone: fill the drill hole from bottom up. Hollow brick: insert sleeve and fill it bottom up, so that the resin is pressed through the tiny holes of the sleeve
- Insert anchoring rod with twisting left-right motion
- Inspect the drill hole for adequate filling
- Observe hardening time. Don't move the anchoring rod during curing
- Leave the excess of product to cure as well. Remove it mechanically with hammer and chisel once cured
- Install component, applying the right torque

Remark: The directives contained in this documentation are the result of our experiments and of our experience and have been submitted in good faith. Because of the diversity of the materials and substrates and the great number of possible applications which are out of our control, we cannot accept any responsibility for the results obtained. In every case it is recommended to carry out preliminary experiments.

Revision: 25/06/2021

Page 3 of 9

Installation parameters threaded rods:

Diameter threaded rod	d	mm	M8	M10	M12	M16	M20	M24	M27	M30
Drill diameter	D ₀	mm	10	12	14	18	24	28	32	35
Min. anchorage depth	h _{ef,min}	mm	60	60	70	80	90	96	108	120
Max. anchorage depth	h _{ef,max}	mm	160	200	240	320	400	480	540	600
Min. edge distance	Cmin	mm	40	50	60	80	100	120	135	150
Min. axial distance	S _{min}	mm	40	50	60	80	100	120	135	150
Tightening torque	Tinst	Nm	10	20	40	80	120	160	180	200

Installation parameters reinforcement bars:

Diameter reinforcement bar	d	mm	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Drill diameter	D ₀	mm	12	14	16	18	20	24	32	35	40
Min. anchorage depth	h _{ef,min}	mm	60	60	70	75	80	90	100	112	128
Max. anchorage depth	h _{ef,max}	mm	160	200	240	280	320	400	500	580	640
Min. edge distance	Cmin	mm	40	50	60	70	80	100	125	140	160
Min. axial distance	Smin	mm	40	50	60	70	80	100	125	140	160

Remark: The directives contained in this documentation are the result of our experiments and of our experience and have been submitted in good faith. Because of the diversity of the materials and substrates and the great number of possible applications which are out of our control, we cannot accept any responsibility for the results obtained. In every case it is recommended to carry out preliminary experiments.

Revision: 25/06/2021

Page 4 of 9

Table C1: Characteristic values for steel t	ension a	nd shear	resista	nce of	thread	led rod	ls				
Diameter threaded rods			M8	M10	M12	M16	M20	M24	M27	M30	
Characteristic values for tension, steel failure			-	<u> </u>	•	<u> </u>	<u> </u>	<u> </u>	•		
Characteristic tensile strength, steel class 4.6 en 4.8	N _{Rks}	kN	15	23	34	63	98	141	184	224	
Characteristic tensile strength, steel class 5.6 en 5.8	N _{Rks}	kN	18	29	42	78	122	176	230	280	
Characteristic tensile strength, steel class 8.8	N _{Rķs}	kN	29	46	67	125	196	282	368	449	
Characteristic tensile strength, stainless steel A2, A4 and HCR class 50	N _{Rks}	kN	18	29	42	79	123	177	230	281	
Characteristic tensile strength, stainless steel A2, A4 and HCR class 70	N _{Rks}	kN	26	41	59	110	171	247	-	-	
Characteristic tensile strength, stainless steel A4 and HCR class 80	N _{Rks}	kN	29	46	67	126	196	282	-	-	
Characteristic values for tension, partial factor				<u> </u>							
Partial factor steel class 4.6	¥ _{Ms,N} ¹⁾		2.0								
Partial factor steel class 4.8	¥ _{Ms,N} ¹⁾					1	.5				
Partial factor steel class 5.6	¥ _{Ms,N} ¹⁾					2	.0				
Partial factor steel class 5.8	¥ _{Ms,N} 1)					1	.5				
Partial factor steel class 8.8	¥ _{Ms,N} ¹⁾		1			1	.5				
Partial factor stainless steel A2, A4 and HCR class 50	¥ _{Ms,N} 1)					2.	86				
Partial factor stainless steel A2, A4 and HCR class 70	¥ _{Ms,N} ¹⁾		1.87								
Partial factor stainless steel A4 and HCR class 80	۷ _{Ms,N} 1)		1.6								
Characteristic shear resistance, steel failure											
Steel failure without lever arm											
Characteristic shear resistance, steel class 4.6 and 4.8	V ⁰ _{Rks}	kN	7	12	17	31	49	71	92	112	
Characteristic shear resistance, steel class 5.6 and 5.8	V ⁰ _{Rks}	kN	9	15	21	39	61	88	115	140	
Characteristic shear resistance, steel class 8.8	V ⁰ _{Rks}	kN	15	23	34	63	98	141	184	224	
Characteristic shear resistance, stainless steel A2, A4 and HCR class 50	V ⁰ _{Rks}	kN	13	20	30	55	86	124	115	140	
Characteristic shear resistance, stainless steel A2, A4 and HCR class 70	V ⁰ _{Rks}	kN	13	20	30	55	86	124	115	140	
Characteristic shear resistance, stainless steel A4 and HCR class 80	٧ ⁰ _{Rks}	kN	13	20	30	55	86	124	115	140	
Steel failure with lever arm											
Characteristic shear resistance, steel class 4.6 and 4.8	M ⁰ _{Rks}	kN	7	12	17	31	49	71	92	112	
Characteristic shear resistance, steel class 5.6 and 5.8	M ⁰ _{Rks}	kN	9	15	21	39	61	88	115	140	
Characteristic shear resistance, steel class 8.8	M^0_{Rks}	kN	15	23	34	63	98	141	184	224	
Characteristic shear resistance, stainless steel A2, A4 and HCR class 50	M ⁰ _{Rks}	kN	13	20	30	55	86	124	115	140	
Characteristic shear resistance, stainless steel A2, A4 and HCR class 70	M ⁰ _{Rks}	kN	13	20	30	55	86	124	115	140	
Characteristic shear resistance, stainless steel A4 and HCR class 80	M ⁰ _{Rks}	kN	13	20	30	55	86	124	115	140	
Characteristic shear resistance, partial factor											
Partial factor steel class 4.6	Y _{Ms,V} ¹⁾					1.	67				
Partial factor steel class 4.8	Y _{Ms,V} ¹⁾					1.	25				
Partial factor steel class 5.6	Y _{Ms,V} ¹⁾					1.	67				
Partial factor steel class 5.8	γ _{Ms,V} ¹⁾					1.	25				
Partial factor steel class 8.8	¥ _{Ms,V} 1)		1			1.	25				
Partial factor stainless steel A2, A4 and HCR class 50	Y _{Ms,V} ¹⁾					2.	38				
Partial factor stainless steel A2, A4 and HCR class 70	Y _{Ms,V} ¹⁾		1			1.	56				
Partial factor stainless steel A4 and HCR class 80	Y _{Ms,V} ¹⁾		1			1.	33				
⁾ In absence of national regulation											

¹⁾ In absence of national regulation

Remark: The directives contained in this documentation are the result of our experiments and of our experience and have been submitted in good faith. Because of the diversity of the materials and substrates and the great number of possible applications which are out of our control, we cannot accept any responsibility for the results obtained. In every case it is recommended to carry out preliminary experiments.

Revision: 25/06/2021

Page 5 of 9

	Tabel C2: Characterist	ic values o	f tension lo	ads unde	r static, qu	asi-static a	ınd seismi	c action						
Diameter threaded	rod			M8	M10	M12	M16	M20	M24	M27	M30			
Characteristic values	s of tension loads, steel failure													
Characteristic tensio	n registence	N _{Rks}	kN				See ta	able C1						
Characteristic tensio	in resistance	N _{Rks,eq}	kN	1,0 * N _{Rk,s}										
Partial factor		¥Ms,N	-				See ta	able C1						
Combined pull-out an	d concrete failure													
Characteristic bond re	esistance in non-cracked concrete C20/25													
	Temperature range I: 40°C to 24°C	TRkucr	N/mm ²	10	12	12	12	12	11	10	9			
Dry and wet concrete	Temperature range II: 80°C to 50°C	TRkucr	N/mm ²	7.5	9	9	9	9	8.5	7.5	6.5			
	Temperature range III: 120°C to 72°C	TRkucr	N/mm ²	5.5	6.5	6.5	6.5	6.5 6.5 5.5						
	Temperature range I: 40°C tot 24°C	TRkucr	N/mm ²	7.5	8.5	8.5	8.5							
Flooded bore hole	Temperature range II: 80°C tot 50°C	TRkucr	N/mm ²	5.5	6.5	6.5	65	1	lo performa	nce declare	d			
	Temperature range III: 120°C tot 72°C	TRkucr	N/mm ²	4.0	5.0	5.0	5.0	I						
Characteristic bond re	esistance in cracked concrete C20/25													
	Temperature range I: 40°C to 24°C	TRKcr	N/mm ²	4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5			
	Temperature range 1. 40 C to 24 C	T _{Rk,cr,eq}	N/mm ²	2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5			
	Temperature range II: 80°C to 50°C	TRkcr	N/mm ²	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5			
Dry and wet concrete	Temperature range il. 80 C to 50 C	T _{Rk,cr,eq}	N/mm ²	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1			
		TRkcr	N/mm ²	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5			
	Temperature range III: 120°C to 72°C	TRk,cr,eq	N/mm ²	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4			
	T	Ţĸķcr	N/mm ²	4,0	4,0	5,5	5,5							
	Temperature range I: 40°C to 24°C	T _{Rkcr,eq}	N/mm ²	2,5	2,5	3,7	3,7	No performance declared						
	T	TRkcr	N/mm ²	2,5	3,0	4,0	4,0							
Flooded bore hole	Temperature range II: 80°C to 50°C	T _{Rk,cr,eq}	N/mm ²	1,6	1,9	2,7	2,7							
	T	TRKcr	N/mm ²	2,0	2,5	3,0	3,0	t						
	Temperature range III: 120°C to 72°C	T _{Rkcr,eq}	N/mm ²	1,3	1,6	2,0	2,0	1						
	•	C25/30					1.	02						
		C30/37					1.	04						
Increasing factors for	concrete (only static and quasi-static	C35/45					1.	07						
action) Ψ _c		C40/50					1.	08						
		C45/55					1.	09						
		C50/60					1.	10						
Concrete conce failu	re		<u> </u>											
Non-cracked concrete	1	k _{ucr,N}	-				1.	1,0						
Cracked concrete		k _{cr,N}	-				7	7 ,7						
Edge distance		C _{cr,N}	mm				1,5	h _{ef}						
Axial distance		S _{cr,N}	mm					C _{cr,N}						
Splitting		0,,14												
	h/h _{ef} ≥ 2,0	C _{cr,sp}	mm				1,0	∙ h _{ef}						
Edge distance	$2,0 > h/h_{ef} > 1,3$	C _{cr,sp}	mm					2,5 - h/h _{ef)}						
-	$h/h_{ef} \leq 3.0$	C _{cr,sp}	mm					h _{ef}						
Axial distance	<u> </u>	S _{cr,sp}	mm	2. c _{cr,sp}										
	and wet concrete)		inst	1.0 1.2										
nstallation factor (dry and wet concrete) nstallation factor (flooded bore hole)		8	inst	1.0 1.2 1.4 No performa										

Remark: The directives contained in this documentation are the result of our experiments and of our experience and have been submitted in good faith. Because of the diversity of the materials and substrates and the great number of possible applications which are out of our control, we cannot accept any responsibility for the results obtained. In every case it is recommended to carry out preliminary experiments.

Revision: 25/06/2021

Page 6 of 9

Table C3: Characteristic	c values of shea	ar loads	under s	tatic, q	uasi-sta	tic and	seismi	ic actio	n				
Diameter threaded rod			M8	M10	M12	M16	M20	M24	M27	M30			
Steel failure without lever arm													
Characteristic shear resistance	V ⁰ _{Rks}	kN	See table C1										
	V _{Rk,s,eq}	kN	0,70 . V ⁰ _{Rks}										
Partial factor	∦ Ms,∨	-	See table C1										
Ductility factor	k ₇	-	1,0										
Steel failure with lever arm													
Characteristic bending moment	$M^{0}_{k,s}$	Nm	See table C1										
	$M^{0}_{k,s,eq}$	Nm	No performance declared										
Partial factor	۷	∕ls,V	See table C1										
Concrete pry-out failure													
Factor	k ₈	-				2	.0						
Installation factor	Yinst	-				1	.0						
Concrete edge failure													
Effective length of fastener	۱ _f	mm			l	_f = min(h	_{ef} ; 8 d _{nor}	")					
Outside diameter of fastener	d _{nom}	mm	8	10	12	16	20	24	27	30			
Installation factor	Yinst	-				1	.0						
Factor for annular gap	α_{gap}	-	0,5 (1,0) ¹⁾										

¹⁾ Value betw een brackets: see ETA-10/0167

Remark: The directives contained in this documentation are the result of our experiments and of our experience and have been submitted in good faith. Because of the diversity of the materials and substrates and the great number of possible applications which are out of our control, we cannot accept any responsibility for the results obtained. In every case it is recommended to carry out preliminary experiments.

Revision: 25/06/2021

Page 7 of 9

	Table C6: Characteristic	c values o	of tension	loads u	nder sta	tic, quas	i-static a	nd seism	nic actio	n				
Diameter reir	nforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Steel failure														
Characteristic t	tension resistance	N _{Rk,s}	kN					$A_s x f_{uk}^{(1)}$						
Characteristic t		N _{Rk,s,eq}	kN				1	,0.A _s xf _{uk}	1)					
Cross section a	area	As	mm²	50	79	113	154	201	314	491	616	804		
Partiële veilighe	eidsfaktor	¥Ms,N						1,4 ²⁾						
Combined pull-	-out and concrete failure													
Characteristic b	bond resistance in non-cracked concret	e C20/25			•	-		-	-	-	-			
Dry and wet	Temperature range I: 40°C to 24°C	TRk,ucr	N/mm ²	10	12	12	12	12	12	11	10	8.5		
concrete	Temperature range II: 80°C to 50°C	TRk,ucr	N/mm ²	7.5	9	9	9	9	9	8.0	7.0	6.0		
	Temperature range III: 120°C to 72°C	TRk,ucr	N/mm ²	5.5	6.5	6.5	6.5	6.5	6.5	6.0	5.0	4.5		
Flooded bore	Temperature range I: 40°C to 24°C	TRk,ucr	N/mm ²	7.5	8.5	8.5	8.5	8.5						
hole	Temperature range II: 80°C to 50°C	TRk,ucr	N/mm ²	5.5	6.5	6.5	6.5	6.5	No	performa	nce decla	red		
	Temperature range III: 120°C to 72°C	TRkucr	N/mm ²	4.0	5.0	5.0	5.0	5.0						
Characteristic b	bond resistance in cracked concrete C2	0/25				•		•	-					
	Temperature range I: 40°C to 24°C	TRk,ucr	N/mm ²	4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5		
Dry and wet	Temperature range I: 40°C to 24°C	TRk,ucr,eq	N/mm ²	2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5		
concrete	Temperature range II: 80°C to 50°C	TRK,ucr	N/mm ²	2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5		
	Temperature range II: 80°C to 50°C	TRk,ucr,eq	N/mm ²	1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1		
	Temperature range III: 120°C to 72°C	TRK,ucr	N/mm ²	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5		
	Temperature range III: 120°C to 72°C	TRk,ucr,eq	N/mm ²	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4		
	Temperature range I: 40°C to 24°C	TRk,ucr	N/mm ²	4,0	4,0	5,5	5,5	5,5						
	Temperature range I: 40°C to 24°C	TRk,ucr,eq	N/mm ²	2,5	2,5	3,7	3,7	3,7						
Flooded bore hole	Temperature range II: 80°C to 50°C	TRK,ucr	N/mm ²	2,5	3,0	4,0	4,0	4,0	No performance declared					
	Temperature range II: 80°C to 50°C	TRk,ucr,eq	N/mm ²	1,6	1,9	2,7	2,7	2,7						
	Temperature range III: 120°C to 72°C	TRK,ucr	N/mm ²	2,0	2,5	3,0	3,0	3,0						
	Temperature range III: 120°C to 72°C	TRk,ucr,eq	N/mm ²	1,3	1,6	2,0	2,0	2,0						
		C25/30						1.02						
		C30/37						1.04						
Increasing fac	ctors for concrete (only static or quasi-	C35/45						1.07						
	static actions) Ψ_c	C40/50						1.08						
		C45/55						1.09						
		C50/60						1.10						
Concrete cone	failure													
Non-cracked co	oncrete	k _{ucr,N}	-					11,0						
Cracked concre	ete	k _{cr,N}	-					7,7						
Edge distance		C _{cr,N}	mm					1,5 h _{ef}						
Axial distance		S _{cr,N}	mm					2.c _{cr,N}						
Splitting														
	h/h _{ef} ≥ 2,0	C _{cr,sp}	mm					1,0 h _{ef}						
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	mm				2.	h _{ef} (2,5 - h	ı/h _{ef)}					
	h/h _{ef} ≤ 3,0	C _{cr,sp}	mm					2,4 [·] h _{ef}						
Axial distance		S _{cr,sp}	mm					2.c _{cr,sp}						
Installation fact	tor (dry and wet concrete)	Yir	nst	1.0					.2					
Installation fact	tor (flooded bore hole)	Yir	nst			1,4			No	performa	nce decla	red		

 $^{1)}\,f_{uk}\,shell\,be$ taken from the specifications of reinforcing bars

²⁾ In absence of national regulation

Remark: The directives contained in this documentation are the result of our experiments and of our experience and have been submitted in good faith. Because of the diversity of the materials and substrates and the great number of possible applications which are out of our control, we cannot accept any responsibility for the results obtained. In every case it is recommended to carry out preliminary experiments.

Revision: 25/06/2021

Page 8 of 9

Tabel C7: Characte	ristic values of she	ar load	ls unde	rstatic,	quasi-	static a	nd seisr	nic acti	ion			
Diameter reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm												
	V _{Rks}	kN				0,5	50 x A _s x f	: 1) uk				
Characteristic shear resistance	$V_{Rk,s,eq}$	kN	0,35 x A _s x f _{uk} ¹⁾									
Cross section area	A _s	mm²	50	79	113	154	201	214	491	616	804	
Partial factor	Y _{Ms,∨}	-	1,5 ²⁾									
Ductility factor	k ₇	-	1,0									
Steel failure with lever arm												
Characteristic bending moment	M ⁰ _{Rks}	Nm	$1,2 \times W_{el} \times f_{uk}^{(1)}$									
	$M^{0}_{Rk,s,eq}$	Nm	No performance declared									
Elastic section modulus	W _{el}	mm³	50	98	170	269	402	785	1534	2155	3217	
Partial factor	Y _{Ms,∨}					<u>.</u>	1,5 ²⁾			8		
Concrete pry-out failure												
Factor	k ₈	-					2.0					
Installation factor	Y _{inst}	-					1,0					
Concrete edge failure												
Effective length of fastener	۱ _f	mm	$I_f = min(h_{ef}; 8 d_{nom})$									
Outside diameter of fastener	d _{nom}	mm	8	10	12	14	16	20	25	28	32	
Installation factor	¥inst	-					1.0					
Factor for annular gap	α_{gap}	-					0,5 (1,0) ³	;)				

 $^{1)}\,f_{uk}\,\mbox{shall}$ be taken from the specifications of reinforcing bars

²⁾ In absence of national regulation

³⁾ Value in brackets: see ETA-10/0167

Remark: The directives contained in this documentation are the result of our experiments and of our experience and have been submitted in good faith. Because of the diversity of the materials and substrates and the great number of possible applications which are out of our control, we cannot accept any responsibility for the results obtained. In every case it is recommended to carry out preliminary experiments.